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Abstract— A direct analytical and numerical method independent of the existing classical methods
for solving linear and nonlinear vibration problems is given with the introduction of a piecewise
constant argument [Nf]/N. A new numerical method which produces sufficiently accurate results
with good convergence is introduced. Development of the formulae for numerical calculations is
based on the original governing differential equations. © 1997 Elsevier Science Ltd.

1. INTRODUCTION

The retarded and advanced functional differential equations with piecewise constant argu-
ment [7] or (t+n[f]) have attracted a great deal of attention from the research workers
(Busenberg et al., 1982; Cooke et al., 1984, 1987 ; Aftabizadeh er al., 1985) in this area
since the early 1980s. The first-order differential equations with a piecewise constant argu-
ment have been studied from the mathematical point of view of proofs of existence and
uniqueness of solutions and oscillatory properties. Dai and Singh (1994) recently presented
the solutions of several second-order differential equations representing motions of a spring-
mass system disturbed by a piecewise constant force in the form of f{[#]) or f{x([¢])). The
oscillatory, nonoscillatory and periodic properties of motion of the spring-mass system
were investigated. In this paper, the authors introduce a piecewise constant argument
[N1}/N such that the differential equations studied by Busenberg ez al. (1982), Cooke et al.
(1984, 1987), Aftabizadeh er al. (1985), Dai and Singh (1994) with piecewise constant
argument [f] become special cases of the corresponding differential equations with the
argument [Nf]/N when N = 1. It is demonstrated in this paper that the argament [Nf]/N
tends to s when N approaches infinity in such a way that the governing differential equations
with piecewise constant argument [Nf]/N tend to become the differential equations with
continuous argument /. With the introduction of the piecewise constant argument, the
second-order differential equations which govern the vibration problems of an oscillatory
system, can be directly solved through a piecewise-constant procedure.

In order to solve a second-order differential equation by a classical analytical method
such as Euler’s method discussed by Lancaster (1966) and Weaver et al. (1990), a form of
the sought solution is assumed in advance and the complete solution of the differential
equation depends on the assumed form of the solution and the characteristic equation
produced by the assumed solution. In contrast with the classical methods, the approach
presented in this paper generates solutions directly from the original differential equations,
which govern the corresponding vibration problems, without any initial assumption for the
form of the solutions.

It is shown 1in this paper that a function f{[N{]/N) with the argument [N¢]/N is a good
approximation to the given continuous function f(¢) with argument ¢, if the parameter N is
sufficiently large. This makes the procedure of solving linear and nonlinear vibration
problems an efficient numerical method. An important distinction between the present
method and existing numerical methods is that the solutions given by the existing numerical
methods are discrete, whereas the solutions and their first derivatives produced by the
present method are continuous everywhere along the entire time range considered. Since
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the function f{[N1]/N) is piecewise constant and [N1] is an integer, the recurrence relation
used in numerical calculation can be easily derived and the numerical calculation can be
conveniently carried out on a computer.

According to the convention, the mathematical symbol [*] used in this paper represents
the greatest-integer function (Busenberg et al., 1982 ; Cooke et al., 1984, 1987 ; Aftabizadeh
et al., 1985). Assume n is an integer and y is a value in the range n < y < n+ 1, then [y] = n.
Thus [y] keeps a constant value n as y varies in between n < y < n+1. If [y] is further
employed as an argument, when y increases continuously, the corresponding value of [y}
is piecewise constant.

2. PIECEWISE-CONSTANT METHOD IN SOLVING THE GOVERNING EQUATIONS FOR
VIBRATION PROBLEMS

Vibratory motion associated with simple and complicated dynamic systems in engin-
eering applications can often be simplified to the motion of a spring-mass system with one
degree of freedom described by an equation of the form

mi+cx+kx =), t>0 (O

where the time dependent function f{r) is known and expresses the continuous external
force acting on the spring-mass system.

In order to represent a continuous system described in eqn (1) by a dynamic system
with piecewise constant argument, the following theorem is introduced.

Suppose an argument [Nt] is the greatest-integer function of the product of time t and a
parameter N, where N is a real positive integer (for the sake of convenience, though N is not
necessarily an integer), then, ratio [Nt]/N approaches t as N goes to infinity.

The theorem can be proved as follows. For a given ¢ > 0, there exists a number
N, such that 1/N; < ¢. Since [Nt]/N—1t =([Nf]—Nt)/N and —1 < [Ni] - Nt <0, hence,
[[Nt}/N—t] £ N. Accordingly for any ¢ > 0, take N, > [1/¢], when N = N, It follows that

[VF] 1
o< —<e 2
}N AR @)

By the arbitrariness of ¢, a result of limiting case can be given as follows:

3121( V1] =t (3)
The theorem is thus proved.

The above theorem and the conclusion given in eqn (3) is extremely important since
most of the derivations in the next section will depend on them. With the theorem, eqn (1)
can be solved by replacing the variable ¢ of the continuous function f{¢) in eqn (1) with the
piecewise constant variable [N7]/N such that a piecewise constant system is obtained with
the governing equation:

it X +kX = g (Efvﬂ) (NAIN < ¢ <(INf+ 1)/N. @

For the purpose of distinction between the continuous system governed by eqn (1) and the
piecewise constant system indicated above, and for convenience of further discussion, X
here is designated for the displacement of the piecewise constant system governed by eqn
{(4). The forcing function g([N{]/N) in eqn (4) stands for the piecewise constant force acting
on the system. g([N¢]/N) is discontinuous on the entire range of ¢ [0, o0), and only varies
its value at the moment r = i/N, i =1,2,3,...,[Nt]. The value of g([N¢]/N) is constant
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in the interval i/N < t <(i+1)/N and g([N¢]/N) has the same values as f{f) at t = i/N,
i=1,2,3,...,[Nt, ie., g(i/N) = f(i/N). This implies that the length of the interval is 1/N.
The length of the interval is less than a unit of time if the parameter N is taken a value greater
than one. Theoretically, according to the theorem, the length of the interval approaches zero
as N tends to infinity.

Based on the discussion above, eqn (4) represents a simplified continuous dynamic
system of linear vibration within a time segment of length 1/N. When the parameter  is
made large enough, the time interval is made correspondingly as small as desired, the
motion governed by eqn (4) can be approximately considered as the vibration governed by
eqn (1). It will be shown in the following section that the solutions of eqns (1) and (4) are
identical if N tends to infinity. The procedure of representing a continuous function in eqn
(1) by a piecewise constant function over i/N < 1 <(i+1)/N is termed as “‘Piecewise Con-
stant Procedure” hereafter.

A function X(1) is a solution of eqn (4) only if the following conditions are satisfied.

(i) X(¢) and its derivative X(f) are continuous over &[0, «c) ;
(ii) X(¢) exists at each point of time with the possible exception at the points i/N where
the left-sided derivatives exist ;
(ii1) on each time interval i/ N < t < (i+ 1)/N, X(¢) satisfies eqn (4) ;
(iv) the general solution X(¢) is a combination of any particular solution of the inhomo-
geneous eqn (4) and the solution of the corresponding homogeneous equation.

3. ANALYTICAL SOLUTIONS THROUGH PIECEWISE CONSTANT PROCEDURE

Based on the existence and uniqueness of the solution X(¢) on [0, o) and X(¢) for the
interval i/N <t <(i+1)/N, the complete solution for x(¢) in eqn (1) can be derived by
employing the piecewise constant argument [N¢]/N. For the purpose of clarification, a free
vibration without damping, i.e., ¢ = 0 and f(#) = 0 in eqn (1), will first be solved by the
piecewise constant procedure.

(a) Free vibration without damping
Consider an equation of motion of an undamped free vibratory system :

() +wx() =0 (5)

where ®* = k/m.
The initial conditions are given by

x(t=0)=d, and x(t=0) = v, (6)

The term w’x(f) in eqn (5) can be represented by a piecewise constant function over an
arbitrary time interval i/N <t <(i+1)/N and the corresponding equation of motion is
expressible in the form

i

1\';,-(1) +(,!)2X,- (N)

I

0 (N

for any time interval i/N <t <(i+1)/N,i=0,1,2,3,...,[N:]. Equation (7) is now a sim-
plified linear differential equation. In eqn (7), the subscript i represents the ith time interval
from the origin r = 0. The term w?X(i/N) in the equation is constant over the time segment
i/N <t <(i+1)/N. Because of this, eqn (7) can be directly integrated over this interval to
obtain a general solution.
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X.(1) = [:1_%i(t— %)z]ili““(t- ”]%)Ui @®

where d; and v, are displacement and velocity respectively at ¢ = i/N. Similarly, denoting
X,_, as the solution on the interval (i— 1)/N < t < i/N, the integration of the corresponding
differential equation gives

2 :1\2 i
Xi‘l(t)=|:1_w7<t—%) :|di~1+<f—LN—1>val 9

where

—1 . —1
d_,=X_, (l_N—) and v, =X, (%) (10)

As the motion of the system is continuous, the displacement X(#) and velocity X(¥)
must be continuous on t€[0, o). Because of the continuity of X and X, the following
conditions must be satisfied :

i i L[ } l
X,»(N)=X,-_1(]'\7) and X,-(ﬁ)zxil(]v)' (11)

With the above conditions of continuity, a recurrence relation is obtained by sub-
stituting eqns (8) and (9) ineqn (11) as

lidi:l _ |:1 —w’/2N I/N:I [di_l:l, (12)
v; —w?/N 1 Ui

As a consequence of an iterative procedure, d; and v; can be connected to the initial
displacement d, and initial velocity v, in the form
d
[ "} (13)
Uy

41 [l1-w*2N> 1N}
[vf]—[ ~w*N 1 }

It is clear that the displacement and velocity of the system at any given point of time i/N
can be calculated by using eqn (13).

Considering that the ith time interval is arbitrarily chosen and [N¢] can be any integer
number represented by i, the complete solution X(z) may be written on the basis of eqns
(8) and (13) as

_ w [ [N\ [N[1-*2N? UNTM[4,
e s A

Note that the solution is valid on the entire range, ¢ > 0, and it is continuous on any interval
i/{N <t <(i+1)/N as well as the range [0, ). For any time ¢ there is a value of X(¢)
corresponding to it. A limit of eqn (14) can be further taken as N approaches infinity.
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Let Q represent the square matrix in eqn (14)

o 1
oN? N
Q= , : (15)
(43}

According to Lancaster (1966}, Q can be written in the following form :
Q =EDE! (16)

where E is a set of linearly independent eigenvectors of Q and D a diagonal matrix of the
eigenvalues of Q. Designating ¢; as eigenvalues of the matrix Q and noting that EE~' is
equivalent to an identity matrix, by Lancaster (1966), the exponential matrix of Q may
now be written as

’ [N1]
Q[Nl] — ED[N;]EL] -E |:¢1 0 v E,l ) d)l 0 :‘E”l (17)
0 ¢ 0 ¢

where the eigenvalues ¢, and ¢, are determined from eqn (15) as

0 W 16N\
o=l T (1— w’ ) (15
0 W 16N\
— 1 - . 19
& 4N? 4N2( ? ) ()

Corresponding to these eigenvalues, E and the inverse of E can be calculated as

follows :
1 16N2\!/2 1 16N2\1/2
—I{1—-{1- —1={1-
e =050 Tl -0-) ]

1 1

r 2N l+ 1 7
16N2 12 2 INz 1/2
=) )
1 w? w?

E ' = . 21
2N 1 1 @D
16N?\'? 2 16N\

(=) )
= w w -

Taking these facts into consideration, the general solution (14) can be given in the
following form :

1 d,
X(1) = *“T(;l:[bn bi2]A [U jl (22)

a o
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where
_ l:all(b[lml—alz¢lzm —alla12¢[lNI]+alla12¢[2N’]:| (23)
¢[1M] ‘4’[21“] _alzqs[th] +a11¢[2M]
and
1 1 1\!"? 1 1 1 \*?
= — —_—— = — _— 4
Y (16N2 wZ) TN <16N2 a)2> (242.0)
w* [N\ [NV1]
b“:l—?(t—T), b12=l——7. (24C,d)

In calculating lim,_, ,, X(2) with the help of 'Hopital’s rule, the following useful results
can be obtained from eqns (18) and (19):

AIIHEO ¢[1Nt] — eitw (25)
Zlel,l;lo ¢[2N1] — eitm. (26)

Further, on the basis of eqns (25) and (26),

. —a [N __ a [NY) eiwr + e —fwt
lim 11 9} 1203 _ 5 = cos(w?) (27)

Nevoo Ay —a;

and

N N
. —ayannd+a a9t
lim

Nom ay —4ay

=5 sin{wt). (28)

Substituting eqns (25), (26), (27) and (28) in eqn (22), the final result is obtained as

cos(w?) ésin(wt} l:d0:| (29)

im X (1) =
Nl—»oc ( ) UO

0 0

which is exactly the same solution as the complete classical analytical solution demonstrated
by Lancaster (1966) for an undamped free vibration system governed by eqn (5), i.e.,

Jim X(1) = x(1) = dy cos o+ %Osin . (30)

The difference between the solution of the continuous system governed by eqn (5) and
the piecewise constant system expressed in eqn (7) vanishes in the limiting case as the
parameter N in eqn (7) approaches infinity. Equation (7) may therefore be considered as a
more general equation of motion covering both a piecewise constant system and in the limit
a continuous system. It may be noted in eqn (7) that as N takes on a finite value, the system
is piecewise constant; but when N tends to infinity, the corresponding system become
continuous representing a linear vibration. It may also be seen from the above discussion
that the linear vibration problem governed by eqn (5) is analytically solved by an approach
independent of the classical analytical methods discussed by Weaver ez al. (1990).
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(b) Forced vibration without damping
With a sinusoidal external force, the equation of motion for an undamped linear
spring-mass system is

i+w?x = FcosQt (31

where F refers to the amplitude of the external force and Q is its angular frequency.

Since the solution of the homogeneous part of eqn (31), X+ w’x = 0, has been obtained
previously in part (a), the equation of motion is expressed in the following piecewise
constant form:

¥ +@X, = Feos (Q %) (32)

which is valid on an ith interval of i/N < ¢ <(i+1)/N.
By the same procedure as discussed in part (a), with identical initial and continuity

conditions, the general solution of eqn (32) can be expressed on the basis of the solution
(30) as

O N R I R | 0 3 e
¥, = [cos [w (t— [—]]\;—t]ﬂésin l:w (t— LNNL])I

where

w
cos— —1
ML F N [Nf]—r
. — 71! cos | Q 35
r=1 (1)2 Slng [ ( N )] ( )
@Sy
F [N1] [N1]
Y, = Cos <Q N )[l—cos (wt—w ~ ! (36)
In the above equations, T is a square matrix of the form
o 1,9
cosy  —sing
T= (37)
. W w
—@sin—  CoS—
with the eigenvalues
¢, =e“" and ¢, =e N (38)

The matrix T with power [N{], similar in form to that in eqn (17), may then be
represented by the following expression with the corresponding eigenvectors of the square
matrix T:
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LT e 0 ;
0 l: ] . (39)
1 w

i 0 e~ Iw{NI/N)

TV =

BN —

When the parameter N approaches infinity, from eqn (34) it can be shown that

cos wt 0

. dy
im ¥, = 1 . 40)
o 0 asin wt [Uo:l ¢

This is a free vibration in exactly the same form as the classical solution presented by
Weaver ef al. (1990) for the homogeneous part of the continuous governing eqn (31).

Noting that the sum after the symbol =¥} in eqn (35) is with respect to the argument
r, the summation of all the terms with argument r can be carried out to give the following
result :

w
; , i
Wil —— —|[e®v-t™ 0 i Nf]—r
M = Z A o w cos | v
2 0 —iw(r—1/N) ® N
11 € b |
1
w
i i — T 1
S 2 0 L )
1 1 2 = 1
i
where
JN(NQ—) __ iIN(INAwo—Q) —N(NAQ-Q) _ iIN(No+Q)
Ile ¢ e e
L, ZE iIN (0 —2) + i/ N(eo+ Q) (42)
1—e 1— N+
1 [/NANIQ-Q) _ ,—iN(No+Q) =i NINIQ—Q) _ o, —i/N((N]o—D)
L, = 2 [ | — g iiM@+@ + | — iN@- :I (43)

Making use of the results given by eqns (3) and (41) together with I'Hopital’s rule, the
limit of the second term in eqn (33) may be obtained to have the following simple form:

N

F
lim ¥, = Z—Q;(cos Qt—cos wi). (44)

The limit of the last term,

F N
}llirolc ¥, = [}/eralo — cos <Q[LNt]) [1 —Cos <wt—w[—Nt]>:| =0. (45)

w

Substituting the results of eqns (40), (44) and (45) into eqn (33) and taking a limit as
N — oo, the limit of the solution to eqn (32) is now obtained in the following form:
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cos wt 0

lim X(0) = x() = | ["°]+

0 —sinwt|| Yo
w

PRy {cos Qr—cos wt). (46)

This is identical to the solution of egn (31) obtained by using the classical analytical
methods demonstrated by Weaver et al. (1990).

(c) Free vibrations with damping
From eqn (1), the equation of motion for free vibration with viscous damping is
expressible as

X4+2nx+w’x =0 47)

where 2n = ¢/m, and the corresponding initial conditions are as shown in eqn (6). By a
piecewise constant procedure, eqn (47) can be expressed in the time interval
iIN<t<(i+1)/Nas

X+X, = —-2nX, (Ai,) (48)

Considering that the term 2nX,(i/N) is constant over i/N < t <(i+1)/N, the results
obtained in part (a) may be employed to yield the homogeneous part of the solution to eqn
(48). On the basis of solution (30), and taking into account the conditions given by eqn
(11), the general solution of eqn (48) is expressible in the form

X.(9) =d;cos |:w (t—— é)]-k j—;sin [w <t— -]i—,ﬂ—v,-f)ﬁz {1 —Cos [w (t— ]%7)]} (49)

By the same procedure as for obtaining eqn (14), and with the continuity conditions
in eqn (11), the complete solution X(¢) of eqn (48) has been derived as

0 oo 2 )2 o - 2 4

(50)
where
c w 1. o 2 (1 o w)
0s — —sin———|1—cos—
[d,] — N w N wZ N N1} [do} (51)
v; B ) 9 g 21’_ 2 Vg
w sin N cos N sin N

The procedure of taking a limit as N approaches infinity has been clarified in parts (a)
and (b). The principles in taking the limits are all the same, and the methods employed in
obtaining the limits are fairly elementary. By the same procedure for finding the limits, the
limit of the closed-form result indicated in eqn (50) as N approaches infinity can be
determined. The limit is obtained as
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0

1‘11151016 Xy=x(t)=e™™ [cos &t %sin ét] [jo]-ke‘”’n—?)sin Er (52)

where { = |/ w? —n? and n < w. This solution is of the same form as the classical analytical

methods produced by Weaver er al. (1990) to eqn (47). The other two solutions for the
cases # > o and n = w may also be derived in a similar manner as for deriving eqn (52).
Again, the solutions obtained are identical to the corresponding solutions given by the
classical analytical methods.

(d) Forced vibrations with damping
If 2 harmonic excitation is applied to the system governed by eqn (47), the cor-
responding vibratory motion may be described by

X+ 2nx+w*x = FcosQt (53)

with initial conditions the same as in eqn (6). Since the homogeneous equation cor-
responding to eqn (53) has been solved previously, the governing equation may be expressed
in a piecewise constant form over i/N <t <(i+ 1)/N as

X.+2nX,+ 0’ X, = Fcos (Q]i\,> (54)

and, with the same procedure as employed in obtaining eqn (14), the complete solution
X(?) can be found for the case n < w as

X(f) = "o~ VM [:cos (ﬁt*f[NTt]>+ Z—sin (g’t—g[—]]\g—]) %sin (ft—f[—jxﬂ)]w
+ ;)I;e‘"“[ml/m [e"“*[‘v’]"m —cos <fl-§[—]]\(;l>— gsin (ff—f[—%ﬂ)] cos (Q[-]]V—VI—]> (55)

where the matrix W is

: ¢ n. ¢
IN __ 2 =
1 a1 " —cos N ésmN F
W = oGV [U } + 5 g . o | ool (56)
0 r=1 (—é_ + é) sin N w

in which the square matrix G has the form
¢ 0 :
cos— + —sin—- —sin—
N &N ¢ N

- (% +é>sin% cos%— gsin%

G= (57)

The limit of X(z) in eqn (55), as N — o0, can be found with the use of eqns (56) and
(57) as
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0

lim X(¢1) = x(t) =e ™ [cos Er+ E,sinit lsin éti' [do]
N—oo & é v

F
+ 2 2
(0> — Q%) + (2nQ))*

[(w2 —Q?)(cosQt —e " cos £1)
+20Q sin Qr — e~ (w? + Q) %sin 5:]. (58)

As it should be, the solution above is identical to the corresponding classical analytical
solution x(¢) of eqn (53) presented by Weaver et al. (1990).

For vibration problems governed by eqn (1), solutions corresponding to free and
forced vibrations with or without damping have been obtained by the piecewise constant
procedure and all the solutions have been proved to converge to the corresponding classical
solutions of eqn (1) as N — oc. Thus, it may be stated that, for any ¢, if

(1) X(0) satisfies eqns (4) and (11) in [i/N,(i+1)/N],
(i) d, =lim, - X(1), and v, = lim,a(,-mff(t),

as N — oo, then X(7) in eqn (4) must converge to x(¢) which satisfies eqn (1) with the
corresponding initial conditions.

4. NUMERICAL SOLUTIONS FOR VIBRATORY PROBLEMS

As was seen in Sections 2 and 3 above, with a sufficiently large N, solution X of the
piecewise constant system approximately represents the solution x(¢) of the corresponding
continuous system in the same interval of time. When the parameter N approaches infinity,
the interval of time segment tends to zero, the solution of a dynamic system with a piecewise
constant argument becomes the solution of the corresponding continuous system. This
enables one to make use of the piecewise-constant method for the purpose of numerically
solving the vibration problems. Due to the properties of the integer argument [N¢} on the
time range considered, the piecewise-constant method is practically convenient in applying
on a computer for numerical solutions of differential equations in dynamics.

(1) Numerical solution of a linear system

A numerical solution of the governing eqn (5) for a linear undamped free system may
first be considered. With the piecewise-constant eqn (7), the solution and recurrence
relations corresponding to the ith time interval can be written as

»° i\ I
0= [1-% (i= Y o (- ) o

X)) = —? (t— i) d+r, (60)
w? 1
d = l:l - EF] di_ + ]_V'U.'—l (61)
wZ
U= — (W) di_yto_y. (62)

Once the initial conditions are given, the displacement X, and velocity X; at the end
of the first interval are readily available from the above equations. Through a step-by-step
procedure, eqns (59), (60), (61) and (62) lead to a numerical solution of eqn (5). From
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eqns (59) and (60), it is evident that a solution of the piecewise-constant dynamical system
and its first derivative are continuous in the interval, i/N < ¢ < i+1/N.

It has been found in the process of the numerical computations that the solutions with
recurrence relations given above are concise and manageable on computers. In addition,
the solutions and the corresponding recurrence relations are easy to construct as shown in
Section 3.

As an example, consider the forced vibration with damping governed by eqn (53).
Based on eqn (55), the numerical solution for this system can be obtained by use of the
following formulae :

X, = e {(clf—y,.) cos [5 (z— N)} Flo+nd—r)lsin [5(t— ﬁﬂ}w (63)

X, = —pe =iV {(di—yi) cos[ (t— _>}+ é[v +n(d;—v;)]sin l:é(r— %)]}
Jent—il { &(d,—7,) sin |:é<t )}+{v +n(d,—7v;)] cos I:ﬁ(t j:?):l} (64)

dy=e "V [(d.v 1= Yie 1)6055

1 S
N E(Ui—l +nd,_; —ny;,_,)sin ]_v':|+?i—1 (65)

s n
v, =e " {v.;. cos% - [(v.-vl +nd_,—ny,_1)5

§+i(di4 —yi—l)}Sin]%} (66)

where
Yi = —-COS—T. (67)
w

Starting with the initial conditions, the above relations are used in a computer program for
obtaining solution in each time interval. The numerical results obtained by the application
of the above equations are illustrated in Fig. 1. As shown in the figure, the error of the
numerical results from the exact solution is already small when N assumes a value of 10.
The numerical results are getting closer and closer to the exact solution of the system as ¥
increases. The parameter N obviously acts as a factor controlling the accuracy of the
numerical solution. In order to have a numerical solution of high accuracy, one may simply
choose a large enough value for N.

It is significant to mention here that the parameter A is actually a factor in controlling
the interval i/N < r < i+ 1/N, which is the step length in the numerical calculations by the
piecewise-constant method. Although the solution given by the piecewise-constant method
will, theoretically, tend to the exact solution as N approaches infinity, for practical reasons,
however, the step length cannot be taken to be too small or correspondingly, N cannot be
taken to be too large. As pointed by Boyce and DiPrima (1969), if the step length is too
small, a large number of steps will be required to operate in a fixed time interval which may
in turn cause a considerable increase of the round-off error. The piecewise-constant method
is a single step method. To carry out the numerical calculations by the piecewise-constant
method, Press’s technique (Press et al., 1986) has been employed for determining the proper
step length.

It should be noted that the numerical solutions above are :

(i) derived directly from the corresponding second-order differential equations ;
(11) valid on the time interval i/N < t <(i+ 1)/N;
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-1 ] ] L 1 i I
0 1 2 3 4 5 6 7
Fig. 1. Convergence of the solution of X(#)+2nx(r)+w’x([Nf]/N) = FcosQt to that of
(1) +2n%(0) + *x(f) = FcosQt (solid line, ‘bi"). n =05, w =3, F=2, and Q = 1. In the figure,
‘NIO:N=10; ‘NI": N=1.

(iii) continuous everywhere on /N <t <(i+1)/N (i.e., in between X, and X,,,). The
continuity of the solutions is independent of the length of the interval which is con-
trolled by the parameter N.

(2) Numerical solutions for nonlinear systems

As an important consequence, the present method can be used to solve nonlinear
vibration problems by linearizing the nonlinear terms of the corresponding nonlinear
differential equations through the piecewise constant procedure.

(a) Duffing’s equation. Consider a nonlinear oscillation governed by the well known
Duffing’s equation with a linear and cubic stiffness:

() +20%(1) + 0’ x(t) + x> (¢) = 0. (68)

This equation of motion may be used to model, for example, a spring-mass system having
a hardening spring discussed by Lancaster (1966) or a buckled beam under harmonic
excitation studied by Dowell et al. (1986). By the piecewise constant procedure, the above
equation of motion is expressible as

X(0)+20X(0) + 0> X(1) + BX° ([i;[vi]) =0 (69)

over the time range in interval {Nf]/N < 1t <([Nf]+1)/N. Displacement of the system on
this time interval can be obtained by the same procedure as discussed in Section 2, which
gives
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X0 = e | (4 2 oo (e )
w

64, Nt A;
#(ser0a+ Zsin (a-el0)- 2| )
¢ w®
and the corresponding velocity

wz

Xi(t) = — Qe —Vam [(d-f- )cos (fr—i[N]>+é( v;+6d.+ ) si ( [

Ni]
n ét—éT)]

+e“’"*””"’”’[ ¢<d+ >sm (ét— ) ( v,+0d,+ ) cos (Ct—fw)} (71)
where

N

Li=Bdl, E=(—60*)'"? and o* > 6.
The recurrence relations in this case are expressible as

_on Aie &\ 1 04\ . (¢ Aioy

.= O/N - ; : d e -
d=e [(d e )cos <N)+ 7 <u _ SR )sm (N)] > (2
v, =e W {UH cos

: M‘: '>+c" (d,-_l + %ﬂ} (73)
w w

& . ¢cle
N _SmN[é (L,»_l +6d,_

With the same initial conditions as in eqn (6) and conditions of continuity described in eqn
(11), a general solution of the problem is obtained in the following form on the entire range
t=0:

X(1) = et tvm [COS(ét—é[]X,]> 7S (ét—é[ﬂ-]>g n(it—é[LNﬂtﬂM

’ , Nt g . Nt '
" - — OGN~ NN |:cos (é,_ £ [-NJ>+ Esm (fl —¢£ %)— eﬁ/N(t-[Nt]/N):‘ (74)

where the matrix M is

E0.
d i cosﬁ+gsmﬁ—e
M = ¢~ VNN L }+ Y e T P . A (75)
‘o =1 —(—+§)sin£
13 N
in which the square matrix
cosé Qsmé lsin—
N ¢ N EN
T= 0 : SR (76)
—(7+é>sinN cosﬁ—csinﬁ
S 9

Although eqn (74) is a complete solution to eqn (69), eqns (70) and (71) with the
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recurrence relations (72) and (73) are practical and manageable when used in a computer
program to procure a numerical solution.

According to what has been discussed in Section 2, piecewise constant argument [N¢]/N
tends to be the continuous time ¢ when N approaches infinity. Hence, as N — o0, eqn (69)
tends to be a continuous Duffing’s eqn (68), and theoretically, the solution in the form of
eqn (74) will be an accurate solution of the Duffing’s eqn (68). The present method may
therefore be employed to analyze and numerically solve the nonlinear oscillation problems,
in addition to solving the linear and nonlinear oscillations subjected to piecewise constant
forces. In fact, if the value of the integer N is properly chosen and large enough, the
numerical solution given by eqn (74) will be sufficiently close to the solution of Duffing’s
eqn (68).

It is significant to note that the solutions given by the present method are continuous
in the time interval {N¢}/N < ¢ <([Nf] +1)/N and the entire range of time ¢¢[0, «0). The
time ¢ in a solution may be given any real value, and for any value of ¢ there is a definite X
value corresponding to it. In contrast to the present method, the most existing numerical
methods such as the average acceleration method, linear acceleration method demonstrated
by Weaver ef al. (1990) and Newmark (1959), Euler’s method and Runge-Kutta method
presented by Philips ef al. (1986) and Gerald et al. (1989), provide only the solutions at the
discrete points, t,, n = 1,2,3,.... The information in between ¢, and ¢, , is not available.
From the discussion above, it can also be seen that all the terms in the governing equations,
except only one term which is piecewise-constant, remain unchanged during the derivation
and calculation of the numerical solutions. For instance, the approximate solution of eqn
(68) is obtained on the basis of the governing eqn (69) with a piecewise constant argument
BX*([Nt]/N). Among the four terms in eqn (69), the first three terms are identical to the
first three terms in eqn (68). The information embedded in these three terms is therefore
retained in the approximate solution expressed by eqn (74). When the chosen value of N is
sufficiently large, BX*([N1]/N) can be very close to fx°(¢), and eqn (74) will then be a good
approximation to the solution of eqn (68). Similarly, by the original information carried
by the unchanged terms in the equations of motion, the continuous solutions such as those
shown in eqns (59), (63), and (70) can be considered as good approximations to the exact
solutions of the corresponding continuous systems if a sufficiently large N is chosen.

Employing the methods of average-acceleration and linear-acceleration, Weaver (1990)
reported the numerical solutions for the governing eqn (68), but without damping. Under
the same conditions, the present method is employed to solve the same governing equation
for a comparison. The numerical solution produced by using eqns (70) and (71) with
recurrence relations (72) and (73) shows good convergency and matches well with the
numerical results obtained by Weaver (1990). Figure 2 gives the numerical results for
different values of N. It may be noted in the figure that the differences between the numerical
solutions decrease as N increases.

(b) Motion of a spring-mass system in the presence of a nonlinear damping and
Sriction. In solving a nonlinear engineering problem in dynamics, according to the discussion
above, governing equation in vibration problems can be linearized on an arbitrary time
interval [Nf]/N <t <([N7]+1)/N by replacing a nonlinear term expressed in the form
J(x(#), x(r),7) with the corresponding piecewise-constant term in the form g(x([N¢]/N),
X([N1}/N), [N1]/N). In carrying out the piecewise constant procedure for a governing equa-
tion having more than one non-linear term, two or more terms or variables in the equation
may be set in a piecewise-constant form on a chosen time interval to make the resulting
equation solvable by the existing methods for solving linear or nonlinear differential equa-
tions. As an example, consider the following equation of motion which represents the
oscillations of a particle attached to a spring under the influence of friction and damping:

X(1) + 0 x(0) + i X(1) + po X (O] X (D] + ps 7 (1) = 0 (77)

where p,, y, and p, are constants. This equation may be expressed in piecewise-constant
form in the interval [N7]/N < t <([Nf]+ 1)/N as
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Fig. 2. Convergence of the solution of mx+ k{x +ax([Nf]/N)*} = 0.m = 100,k = 400,a = 2,d, = 0,
=10.‘7lx": N=10; ‘ndx’ : N = 40; ‘n8x’: N = 80.

X O+’ X+ m X (D) + X, <[Nt])‘f"’f <%)

+us X7 <[]]\g]) =0. (78)

The numerical solution of the system (78) together with the recurrence relations can be
produced through a procedure similar to that used for the system described by eqn (69).
The displacement, velocity and the recurrence relations for numerical calculations are
derived as

e Gl 1)
i e E el o
A el B
G
di= —em2N {(d,._l - Z‘1>cos%+ é [ 1t % (d,-_l 2;1)] sin%}

(81
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Fig. 3. Numerical solution of %+ X+ p;x+ | %} + p£3%° = O (solid line) and the first approxi-
mation (dashed line). w = 0.5, u, = 4.0, u, = 0.2, uy = 0.0, dy = 3.0, v, = 0.0.

— p— M /2N é &» _5‘_‘. ”_% 1 é
v, =e "2 {v,-_,cosN—[2LM+<d,»_1 w2>(4é+éﬂsmN} (82)

where

“

®® > /4, Fo= —prlo|—pv), & =o’— (83a,b,c)

A numerical solution for this system is illustrated in Fig. 3 with a comparison between the
numerical solution given by the present technique and the first approximation for the
amplitude of motion given by Baum (1972).

(3) Chaotic behavior of numerical solutions for nonlinear systems

In analyzing the nonlinear systems with chaotic behavior, the numerical solutions are
known to be very sensitive to initial conditions and time integral step used for numerical
computations as discussed by Gwinn ez al. (1986). In solving the chaotic problems, the
present method can still be employed for the purpose of analysis and numerical compu-
tation.

In nonlinear and chaotic cases, we also found that the piecewise-constant method and
the corresponding Runge—Kutta method give comparatively very close results.

(a) Forced motions of anonlinear pendulum. Consider the following equation of motion
which may lead to chaos:

x+b1x+b2 Sinx=b3COSb4t (84)

where b,, b,, b; and b, are parameters of the problem. The system governed by the above
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equation represents a nonlinear, damped, sinusoidally driven pendulum. Express this equa-
tion in a piecewise constant form in interval [Nf]/N < t <([Nt]+ 1)/N as

_, . N
X+b6,X+5b, sinX<[—Nt]) = bycosb,t. (85)

The displacement and velocity for the system governed by eqn (85) can be derived
through a procedure similar to that used for obtaining eqns (70) and (71) as

b b b b Nt
X, = A+ Be MM _ 2 __cosht+ *'—3—sinb4t—-2(t— Ll)sinar,. (86)
b +b3 by +bib, b, N
bsb, b.b b
X, = —b Be 5~ [N’]N’+ sinb,t+ ———cosh,t— - sind, (87
+b? b: +b? b,
where
1/ bib, . { b,bs i b, .
B = —|—""—sinb, — — — —=sind,—v; 88
= (b4+b2 in 4N+b2 b2cosb4N blsm —; (88)

i bb; . !
—— —————sinb, —. 89
N bi+bp, N (®9)

b
A, =d.— B+ Y cosh,

s +07
The corresponding recurrence relations are

b, [N1] bb, . [Nt] b,
cosh,——+ ————sinb ———sind;,_, (90
Bij+bi N bi+blb, N BN )

di=A_+B_e """ —

IN b3b4 . [Nt] b]b [N[] b2 .
. = — b B. ~b, /N = . 1
v \B;,_ e + e sinb, N +b4 b2 osh, —— ~ b] sind,_, 91)

Making use of the data generated by employing solutions (86) and (87) together with the
recurrence relations (90) and (91), the numerical results are graphically presented in Figs 4
and 5. Figure 4 illustrates the phase trajectory and Fig. 5 shows the corresponding Poincare
map of a chaotic case for the motion governed by equation (84). Under the same conditions,
Figs 4 and S are almost identical to the phase trajectory and the Poincare map provided by
Gwinn (1986), Blackburn et a/. (1989) and Baker er al. (1990).

(b) Duffing’s equation with periodic excitation. A Duffing’s equation in the following
form was investigated by Ueda (1980)

X4c X+c,x° = cycose,t 92)

where ¢|, ¢,, ¢5, ¢, are constants. In order to solve this nonlinear equation by a piecewise
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Fig. 4. Phase trajectory of a steady state solution for ¥+ 5,% + b,sin x = b;cos byt. b, = 0.5, b, = 1.0,
by=1.15.b,=2/3,dy = ~2.5, 0, = 0.
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Fig. 5. Poincare map corresponding to the phase trajectory in Fig. 4.
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Fig. 6. Phase trajectory corresponding to the motion governed by X+ X+ %" = ;€08 ¢yl
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constant procedure, eqn (92) is expressed as

. , Nt
X+C1X+C2X3 <[T])=C3COSC4I. (93)

Noting that the third term on the left-hand-side of eqn (93) is a constant in
[NVf]/N < t <([Nt]+1)/N, whereas the other terms are identical to the corresponding terms
in eqn (84), approximate or numerical solution of eqn (92) can be derived through the same
procedure as demonstrated in part (a) and the displacement, velocity and corresponding
recurrence relations are in similar forms as those shown in eqns (86), (87), (90) and (91).

A chaotic case governed by the equation of motion (92) is examined by using the
solution obtained through the piecewise constant procedure and its phase trajectory is
shown in Fig. 6 which matches well with the results given by Ueda. Sensitivity of the motion
to the initial conditions is found and illustrated in Fig. 7. Under certain conditions the
motion corresponding to eqn (92) may be periodic or nonperiodic. Figure 8 exhibits the
trajectory of a periodic case and Fig. 9 gives the Poincare map of a nonperiodic motion of
the system.

5. CONCLUSIONS

The equations of motion given in Sections 2 and 3 are fundamental and of great
practical importance in connection with vibration problems. Conventionally, in solving
these second-order differential equations in closed form, a certain form of the solution is
assumed beferehand with undetermined constants. Using the assumed solution, an algebraic
equation known as the characteristic equation is found. The solution of the characteristic
equation together with the assumed solution and the initial conditions yields the complete
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Fig. 7. Demonstration of sensitivity of a nonlinear system governed by £+ ¢ %+ c,x° = ¢;€08 ¢4t tO

initial conditions. ¢, = 0.05, ¢, = 1.0, ¢; = 7.5, ¢, = 1.0. Initial conditions: d, = 3.0 and v, = 4.0

(solid line) ; 4, = 3.01 and v, = 4.01 (dashed line).
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Fig. 8. Phase trajectory of a periodic motion governed by %+c¢, %+ ¢,x> = ¢;c05¢,t. ¢, = 0.26,
¢, =10,c3=114,¢,=1.0.
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Fig. 9. Poincare map of a nonperiodic motion governed by ¥+ ¢ x+c,x* = ¢;008 ¢qf. ¢; = 0.00001,
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solution in the closed form. However, in solving the second-order differential equations by
the present method, the solution is considered on a small time segment
[Nt]/N < t <([N1]+1)/N where one of the terms in the differential equation is treated as a
constant. Therefore, the differential equation on this time segment is simplified in a way
such that the corresponding solution can be easily obtained (direct integration is available
for the case (a) in Section 3). If a range from zero to ¢ is considered, X([N¢]/N) is then
piecewise constant related to the unknown function X(¢). Under the continuity conditions,
an approximate solution can be constructed by combining all solutions corresponding to
small time segments over the range from zero to . When the parameter N approaches
infinity and the length of the time segment tends to zero, the solution corresponding to a
given equation of motion converges to its exact solution. In applying the present method
for solving vibration problems, there is no need to assume a solution in advance and
consequently there is no need to construct a characteristic equation as those demonstrated
by Lancaster (1966) and Weaver et al. (1990).

In addition to a new method for solving vibration problems governed by eqn (1), with
the introduction of the argument [N¢]/N, the gap between a continuous system and a
corresponding piecewise constant system has been filled.

The piecewise constant method presented in this paper has also been employed in
numerically solving linear and nonlinear vibration problems. Numerical experiments dem-
onstrate that the method present is efficient and has good convergency. Formulae for
numerical computation for solving various vibratory problems are provided in the present
paper. The solutions and the recurrence relations for numerical calculation can be con-
veniently developed and applied on a computer.

In comparison with the existing numerical methods, there are a few points which need
to be stated.



Solving linear and nonlinear vibration problems 2731

1. In contrast to the existing numerical methods, which give solutions only at discrete
points, numerical solution derived by the present method are continuous everywhere
along the entire time range considered.

2. In numerically solving the vibration problems, usually, the second-order differential
equation has to be transformed into a system of first-order differential equations.
Numerical solutions corresponding to the first-order differential equations are then
developed by employing the mathematical operations such as the linearization discussed
by Smith et al. (1985) or Taylor expansion demonstrated by Dahlquist ef al. (1974). In
doing so, the clarity of the physical meaning involved in the original equation of
motion 1s quite often blurred in the manipulations of the pure mathematical expressions.
However, the present method tries to keep more physical information in the original
governing equation unchanged. In each time interval considered, there is a vibration
system corresponding to it. Due to the maintenance of the original physical information,
the continuous solution given by the present method is a good approximation to the exact
or accurate solution in the time interval and along the entire time range. Theoretically, the
approximate solutions produced by the present method become the exact solutions to
the dynamical systems as N approaches infinity.

3. Iteration is a major operation for the numerical calculations of many numerical methods.
When the local initial conditions are given, the iteration must be repeatedly carried out
to obtain the numerical solution at the end of the time interval. Nevertheless, there is
no iteration involved in the numerical calculations by using the present method. Once
the local initial conditions are available, the continuous solution of the time interval,
including the end of the interval, can be directly obtained.
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